5,329 research outputs found

    Contact based void partitioning to assess filtration properties in DEM simulations

    Get PDF
    Discrete element method (DEM) simulations model the behaviour of a granular material by explicitly considering the individual particles. In principle, DEM analyses then provide a means to relate particle scale mechanisms with the overall, macro-scale response. However, interpretative algorithms must be applied to gain useful scientific insight using the very large amount of data available from DEM simulations. The particle and contact coordinates as well as the contact orientations can be directly obtained from a DEM simulation and the application of measures such as the coordination number and the fabric tensor to describe these data is now well-established. However, a granular material has two phases and a full description of the material also requires consideration of the voids. Quantitative analysis of the void space can give further insight into directional fabric and is also useful in assessing the filtration characteristics of a granular material. The void topology is not directly given by the DEM simulation data; rather it must be inferred from the geometry of particle phase. The current study considers the use of the contact coordinates to partition the void space for 3D DEM simulation datasets and to define individual voids as well as the boundaries or constrictions between the voids. The measured constriction sizes are comparable to those calculated using Delaunay-triangulation based methods, and the contact-based method has the advantage of being less subjective. In an example application, the method was applied to DEM models of reservoir sandstones to establish the relationship between particle and constriction sizes as well as the relationship between the void topology and the coordination number and the evolution of these properties during shearing

    Spontaneous Emission in ultra-cold spin-polarised anisotropic Fermi Seas

    Get PDF
    We examine and explain the spatial emission patterns of ultracold excited fermions in anisotropic trapping potentials in the presence of a spin polarised Fermi sea of ground state atoms. Due to the Pauli principle, the Fermi sea modifies the available phase space for the recoiling atom and thereby modifies its decay rate and the probability of the emitted photon's direction. We show that the spatial anisotropies are due to an intricate interplay between Fermi energies and degeneracy values of specific energy levels and identify a regime in which the emission will become completely directional. Our results are relevant for recent advances in trapping and manipulating cold fermionic samples experimentally and give an example of a conceptually new idea for a directional photon source.Comment: 7 pages, 7 figure

    Pile penetration in crushable soils:Insights from micromechanical modelling

    Get PDF

    Shape up! Perception based body shape variation for data-driven crowds

    Get PDF
    Representative distribution of body shapes is needed when simulating crowds in real-world situations, e.g., for city or event planning. Visual realism and plausibility are often also required for visualization purposes, while these are the top criteria for crowds in entertainment applications such as games and movie production. Therefore, achieving representative and visually plausible body-shape variation while optimizing available resources is an important goal. We present a data-driven approach to generating and selecting models with varied body shapes, based on body measurement and demographic data from the CAESAR anthropometric database. We conducted an online perceptual study to explore the relationship between body shape, distinctiveness and attractiveness for bodies close to the median height and girth. We found that the most salient body differences are in size and upper-lower body ratios, in particular with respect to shoulders, waist and hips. Based on these results, we propose strategies for body shape selection and distribution that we have validated with a lab-based perceptual study. Finally, we demonstrate our results in a data-driven crowd system with perceptually plausible and varied body shape distribution

    Inter-patch movement in an experimental system: the effects of life history and the environment

    Get PDF
    An important process for the persistence of populations subjected to habitat loss and fragmentation is the dispersal of individuals between habitat patches. Dispersal involves emigration from a habitat patch, movement between patches through the surrounding landscape, and immigration into a new suitable habitat patch. Both landscape and physical condition of the disperser are known to influence dispersal ability, although disentangling these effects can often be difficult in the wild. In one of the first studies of its kind, we used an invertebrate model system to investigate how dispersal success is affected by the interaction between the habitat condition, as determined by food availability, and life history characteristics (which are also influenced by food availability). Dispersal of juvenile and adult mites (male and female) from either high food or low food natal patches were tested separately in connected three patch systems where the intervening habitat patches were suitable (food supplied) or unsuitable (no food supplied). We found that dispersal success was reduced when low food habitat patches were coupled to colonising patches via unsuitable intervening patches. Larger body size was shown to be a good predictor of dispersal success, particularly when the intervening landscape is unsuitable. Our results suggest that there is an interaction between habitat fragmentation and habitat suitability in determining dispersal success: if patches degrade in suitability and this affects the ability to disperse successfully then the effective connectance across landscapes may be lowered. Understanding these consequences will be important in informing our understanding of how species, and the communities in which they are embedded, may potentially respond to habitat fragmentation

    Breakage and critical state via DEM

    Get PDF

    The problem of interpretation in vignette methodology in research with young people

    Get PDF
    In this paper we explore how interpretation is dealt with by researchers using a vignette methodology. Researchers using vignette methodology often struggle with interpretation: how to interpret the responses when participants shift between discussing the vignettes as themselves, taking the perspective of the character in the vignette and commenting on what ‘ought’ to happen. We argue that by foregrounding a consideration of the method with an explicitly articulated theoretical position of dialogicality, issues inherent in interpretation become a valuable addition to the research rather than an obstacle to be overcome. In the paper we discuss ‘Louise’ a young carer, detailing the various positions she takes in her talk about the vignette of Mary, a fictitious young carer, to illustrate how a perspective based in dialogical theory contributed to the analysis of her various moves through different identity positions

    On the Influence of Magnetic Fields on the Structure of Protostellar Jets

    Get PDF
    We here present the first results of fully three-dimensional (3-D) MHD simulations of radiative cooling pulsed (time-variable) jets for a set of parameters which are suitable for protostellar outflows. Considering different initial magnetic field topologies in approximate equipartitionequipartition with the thermal gas, i.e., (i) a longitudinal, and (ii) a helical field, both of which permeating the jet and the ambient medium; and (iii) a purely toroidal field permeating only the jet, we find that the overall morphology of the pulsed jet is not very much affected by the presence of the different magnetic field geometries in comparison to a nonmagnetic calculation. Instead, the magnetic fields tend to affect essentially the detailed structure and emission properties behind the shocks at the head and at the pulse-induced internal knots, particularly for the helical and toroidal geometries. In these cases, we find, for example, that the HαH_\alpha emissivity behind the internal knots can be about three to four times larger than that of the purely hydrodynamical jet. We also find that some features, like the nose cones that often develop at the jet head in 2-D calculations involving toroidal magnetic fields, are smoothed out or absent in the 3-D calculations.Comment: 13 pages, 3 figures, Accepted by ApJ Letters after minor corrections (for high resolution figures, see http://www.iagusp.usp.br/~adriano/h.tar

    Analysis of margin classification systems for assessing the risk of local recurrence after soft tissue sarcoma resection

    Get PDF
    Purpose: To compare the ability of margin classification systems to determine local recurrence (LR) risk after soft tissue sarcoma (STS) resection. Methods: Two thousand two hundred seventeen patients with nonmetastatic extremity and truncal STS treated with surgical resection and multidisciplinary consideration of perioperative radiotherapy were retrospectively reviewed. Margins were coded by residual tumor (R) classification (in which microscopic tumor at inked margin defines R1), the R+1mm classification (in which microscopic tumor within 1 mm of ink defines R1), and the Toronto Margin Context Classification (TMCC; in which positive margins are separated into planned close but positive at critical structures, positive after whoops re-excision, and inadvertent positive margins). Multivariate competing risk regression models were created. Results: By R classification, LR rates at 10-year follow-up were 8%, 21%, and 44% in R0, R1, and R2, respectively. R+1mm classification resulted in increased R1 margins (726 v 278, P < .001), but led to decreased LR for R1 margins without changing R0 LR; for R0, the 10-year LR rate was 8% (range, 7% to 10%); for R1, the 10-year LR rate was 12% (10% to 15%) . The TMCC also showed various LR rates among its tiers (P < .001). LR rates for positive margins on critical structures were not different from R0 at 10 years (11% v 8%, P = .18), whereas inadvertent positive margins had high LR (5-year, 28% [95% CI, 19% to 37%]; 10-year, 35% [95% CI, 25% to 46%]; P < .001). Conclusion: The R classification identified three distinct risk levels for LR in STS. An R+1mm classification reduced LR differences between R1 and R0, suggesting that a negative but < 1-mm margin may be adequate with multidisciplinary treatment. The TMCC provides additional stratification of positive margins that may aid in surgical planning and patient education

    Systematic Errors in Cosmic Microwave Background Interferometry

    Get PDF
    Cosmic microwave background (CMB) polarization observations will require superb control of systematic errors in order to achieve their full scientific potential, particularly in the case of attempts to detect the B modes that may provide a window on inflation. Interferometry may be a promising way to achieve these goals. This paper presents a formalism for characterizing the effects of a variety of systematic errors on interferometric CMB polarization observations, with particular emphasis on estimates of the B-mode power spectrum. The most severe errors are those that couple the temperature anisotropy signal to polarization; such errors include cross-talk within detectors, misalignment of polarizers, and cross-polarization. In a B mode experiment, the next most serious category of errors are those that mix E and B modes, such as gain fluctuations, pointing errors, and beam shape errors. The paper also indicates which sources of error may cause circular polarization (e.g., from foregrounds) to contaminate the cosmologically interesting linear polarization channels, and conversely whether monitoring of the circular polarization channels may yield useful information about the errors themselves. For all the sources of error considered, estimates of the level of control that will be required for both E and B mode experiments are provided. Both experiments that interfere linear polarizations and those that interfere circular polarizations are considered. The fact that circular experiments simultaneously measure both linear polarization Stokes parameters in each baseline mitigates some sources of error.Comment: 19 pages, 9 figures, submitted to Phys. Rev.
    corecore